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Abstract. CHIMERE is a chemistry-transport model initially designed for box-modelling of regional atmospheric composition.

In the past decade, it has been converted into a 3D eulerian model that could be used at a variety of scales from local to

continental domains. However, due to the model design and its historical use as a regional model, major limitations had

remained, hampering its use at hemispheric scale, due to the coordinate system used for transport as well as to missing processes

that are important in regions outside Europe. Most of these limitations have been removed in the CHIMERE-2016 version,5

allowing its use in any region of the world and at any scale, from the scale of a single urban area up to hemispheric scale,

including or not polar regions. Other important improvements have been made in the treatment of the physical processes

affecting aerosols and the emissions of mineral dust. From a computational point of view, the parallelization strategy of the

model has also been improved in order to improve model numerical performance and reduce the code complexity.

The present article describes all these changes. Statistical scores for a model simulation over continental Europe are pre-10

sented, and a simulation of the circumpolar transport of volcanic ash plume from the Puyehue volcanic eruption in June 2011

in Chile provides a test case for the new model version at hemispheric scale.

1 Introduction

Deterministic chemistry-transport modelling is now widely used for the analysis of pollution events, scenarios and forecast

(Monks et al., 2009). Numerous models exist and are used from local to global scale, both for gaseous and aerosols modelling15

(Simpson et al. (2012); Inness et al. (2013) among many others).

While models were previously dedicated mainly to specific processes, the last generation of chemistry-transport models

(CTMs) aims at representing the complete set of all processes leading to changes in the atmospheric composition in terms

of aerosols and trace gases. For regional air quality in the troposphere, several CTMs are currently developed and are able

to include all types of emissions: anthropogenic, biogenic, mineral dust, sea salt, vegetation fires and volcanos. Even though20
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all these emission processes are now included in many CTMs, the emitted species have different chemistry and lifetimes,

and models often address some specific applications and thus specific spatial areas. It was the case of the CHIMERE model,

extensively described in Menut et al. (2013b) for its 2013 version. Originally, CHIMERE was designed for urban areas. It was

extended later to western Europe, and then to the northern part of Africa by including mineral dust emissions, but was able to

run over these areas only, due to limitations in forcing sources available data (such as the anthropogenic emissions).5

In the new version presented in this paper, CHIMERE-2016, the new developments made since the CHIMERE-2013 version

presented in Menut et al. (2013b) focus on input databases and model grid management in order to build a CTM able to run

over a hemispheric domain as well as for smaller regions anywhere in the world. These developments required important

changes in the model, as well as the improvement of many processes already included in the previous version: the Fast-JX

module for realistic evaluation of the photolysis rates has been added and allows the calculation of updated photolysis rates at10

each physical time step, including the optical effects of clouds and aerosols. The mineral dust emissions have been upgraded in

order to estimate fluxes in any region. In addition, this new version has also been an opportunity to update the representation of

chemical processes by giving the user the choice to use the SAPRC chemical mechanism, which is more widely used than the

MELCHIOR chemical scheme developed for the CHIMERE model. In the same line, chlorine chemistry has been included,

and the representation of physical processes affecting the aerosols, such as nucleation, coagulation, and wet deposition has15

been improved, while a scheme for resuspension of particulate matter in urbanized areas has been included in the model.

CHIMERE being both used for analysis and forecast, a particular attention was given to the optimization of computational

performance. Numerous improvements were made in the code and are completely transparent for the user: these changes are

described in Section 2.

Section 3 presents the changes in the model geometry, including the vertical mesh, as well as changes in the horizontal20

coordinate system allowing the application of the model to hemispheric scale domains.

Section 4 presents the improvements in the representation of anthropogenic emissions, including the use of the global HTAP

emission dataset for anthropogenic emissions, and the improvements in modelling mineral dust emissions.

Section 5 describes the changes in the representation of various physical and chemical processes in the model, such as

inclusion of the SAPRC scheme for gaseous chemistry or inclusion of chlorine chemistry in the model. This section also25

presents the evolutions in the modelling of the physical processes affecting aerosols, as well as the implementation of the

Fast-JX module for radiative transfers. Another major improvement presented in this section is the ability of CHIMERE-2016

to provide LIDAR observables as a model output.

Section 6 presents the application of CHIMERE-2016 to simulations of three winter months and three summer months in a

domain covering continental Europe at 50 km resolution, and the scores obtained by the model in comparison with background30

observations of gaseous and particulate species in this configuration.

Section 7 presents the application of the new model version to the simulation of the eruption of the Puyehue-Cordon Caulle

volcano, in the Chilean Andes, in June 2011. This event provides a good testbed for this new version, since the volcanic plume

from this volcanic eruption was dense enough to be observed by satellites all along its circumpolar transport around the South

Pole.35
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Finally, Section 8 presents the conclusions of the present study, in terms of applications made possible by this new model

version, as well as the outlines for future developments of the CHIMERE model.

2 Optimizations

Several technical changes were made in the CHIMERE code to improve code scalability: these changes regard the inclusion

of preprocessors into the CHIMERE core (and therefore their parallelization) along with improvement of the parallelization in5

order to improve code scalability.

2.1 Inclusion of preprocessors into CHIMERE core

Compared to the previous model version, several programs that used to be sequential preprocessors executed before running the

model core have now been parallelized and included into the model core. This is the case of the interpolation and treatment of

the input meteorological fields. In the new model version, these fields are read and processed at each hourly time step (instead10

of being processed once and for all in a sequential way at the beginning of the run). This new design has no impact on the

model outputs but has two advantages:

1. It allows a reduction of computation time by parallelization of this calculation step

2. It enables the possibility to develop an online coupled version of the model, in which case the meteorological fields

would not be available before the beginning of the simulation.15

Note that this “real-time” processing of the meteorological fields is only available for users who use meteorological fields from

WRF. For users of other sources of meteorological data such as ECMWF products, offline meteorological preprocessors are

still provided with the model.

2.2 Improvement of the parallelization

In 2006, the CHIMERE core was parallelized using a master/worker pattern. A cartesian division of the simulation domain20

into several sub-domains is done, each sub-domain being attributed to one worker process. Each worker performs the model

integration in its own geographical sub-domain as well as boundary condition exchanges with its neighbours in order to permit

transport from one worker to the next. In addition, in former CHIMERE versions, a master process was needed in order to

gather and scatter data from the workers and to perform initializations and file input/output.

The use of a master process limited the efficiency of the parallelized code, since the master process did not perform any25

computation except gathering and scattering the data to and from the workers, and that it totally centralized the input and

output tasks, a bottleneck effect which limited the gains realized by parallelization, particularly when the simulation domains

were very large and split between many workers.

3

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-196, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 7 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



Therefore, in the CHIMERE-2016 version, this master process has been removed: using the parallel input/output routines of

the Parallel-Netcdf library (Li et al., 2003), each worker process now reads the netcdf input files and writes the output data for

its own sub-domain, removing the bottleneck effect due to the centralization of input/output tasks.

This induces some major simplifications of CHIMERE code, including reduction of inter-process communications related

to the parallelization of the input/output processes, which were performed in a central way by the master process in previous5

model version.

3 Model geometry

Major changes have been implemented in CHIMERE-2016 compared to earlier CHIMERE versions, opening the possibility

to perform simulations in domains including the pole.

Figure 1. Centered (black) and staggered (blue and green) grid points in the Arakawa C-grid.

Historically, CHIMERE has been first designed as a box model for the region of Paris (Menut et al., 2000). Rapidly, it has10

been transformed into a cartesian model on curvilinear Arakawa C-grids (Arakawa and Lamb (1977), see Fig. 1). However, the

formulation of the transport scheme on these curvilinear grids up to CHIMERE-2014b was still based on a lat-lon formulation,

which implied the impossibility to include poles in the domain.

These restrictions have been removed in CHIMERE-2016 by switching from a representation of the grid points in a spherical

coordinate systems, singular at the pole, to a 3d cartesian coordinate system, which has no singularity at the poles. In the former15
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Figure 2. Cartesian and spherical frames for the representation of point coordinates and speed vectors

CHIMERE versions the grid centers were represented by their geographical coordinates
(
λij ,φij

)
, and the wind vectors by

their projection on the local frame (uλ,uφ) (Fig. 2). In the present version, the points are represented by their cartesian

coordinates in the frame centered at the Earth center and with unit vectors (u1,u2,u3), and the wind vectors are represented

by their projections on these unit vectors.

This change in the internal representation of spherical geometry has only a small impact on the simulated values, in the5

sense that it corrects some geometrical errors that appeared due to the assumptions made in the old coordinate system, but

these differences have been found to be of very small amplitude, except in the vicinity of the pole where distorsions due to

the lat-lon system became critical. The new coordinate system allows domains that include the pole, without the need for any

particular filtering. This strategy permits to build regional domains from local to hemispheric scale anywhere on the globe,

including one pole or even both of them, which opens possible application of CHIMERE-2016 for studies in the polar areas,10

including circumpolar transport of polluted air masses, as will be shown in Section 7. An example grid on which CHIMERE-

2016 can be run is shown on Fig. 3. This grid is a polar stereographic grid centered at the north pole, entirely covering the

northern hemisphere, and with the four corners of the domains extending slightly into the southern hemisphere (as far south as

19.47◦S). With this projection and this number of points, the horizontal model resolution varies from 140x140km2 at the pole

to 70x70km2 at the Equator.15
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Figure 3. Model grid generated for the northern hemisphere with 180x180 points in polar stereographic projection, viewed from the top

(upper panel) and from the side (lower panel).
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In this new coordinate system, the transport is calculated as follows. First, the coordinates of every grid center Mij are

converted from their geographical coordinates
(
λij ,φij

)
to cartesian coordinates

(
xij1 ,x

ij
2 ,x

ij
3

)
on a unit sphere as follows:

xij1 = cosφij cosλij

xij2 = cosφij sinλij

xij3 = sinφij (1)

The horizontal wind vector Uij at the grid center is initially represented by the two classical wind components: Uij = uij ·
uλ + vij ·uφ where the zonal and meridional wind components uij and vij are obtained from the meteorological inputs.5

Since this representation splitting the horizontal wind into a zonal and a meridional component is singular at the geographical

poles, before performing the transport operations, the horizontal wind is split into its three components on the cartesian frame

(u1,u2,u3) using the following formulae for projecting the wind on the cartesian frame (u1,u2,u3):

U ij1 =−sinλuij − sinφcosλvij (2)

10

U ij2 = cosλuij + sinφsinλvij (3)

U ij3 = cosφvij (4)

Once the cartesian coordinates of the grid centers
(
xij1 ,x

ij
2 ,x

ij
3

)
and of the wind-speed vectors

(
U ij1 ,U

ij
2 ,U

ij
3

)
are computed

at the grid centers, it is easy to obtain the values of the speed vectors at the staggered cells (Fig. 1) with the following formulae:15

U
i+ 1

2 ,j

k =
U ijk +U i+1,j

k

2
(k = 1,2,3) (5)

U
i,j+ 1

2
k =

U ijk +U i,j+1
k

2
(k = 1,2,3) (6)

This new formulation with the use of cartesian coordinates instead of geographical latitude-longitude coordinates for the20

transport of pollutants removes the constraints that prevented the use of CHIMERE on domains including a geographic pole

and/or a date-change line. This new formulation has been tested on the case of the eruption of the Puyehue volcano, in June

2011, a case during which the ash plume from the volcano went around the south pole through the southern Atlantic, Pacific

and Indian Oceans back to South-America after 15 days (Section 7). This case is a perfect testbed for the ability of the model so

simulate circumpolar movements, and evaluate its ability to represent the location of an aerosol plume after several days/weeks25

of travel.
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3.1 Vertical mesh calculation

The vertical discretization of CHIMERE needs to obey twofold requirements. First, as it has been the case since the beginning

of the development of the model, the vertical mesh needs to be very refined in the lowest atmospheric layers because these

layers are critical for the modelling of boundary layer contamination, particularly in urban areas, but also in marine areas in

order to model correctly the sea-salt emissions, and in arid areas, for mineral dust emissions. On the other hand, the CHIMERE5

model is now used not only for studies at urban/regional scale, but also for studies at continental and, from the present version,

hemispheric scale. Therefore, a relatively fine vertical resolution is also needed in the free troposphere to be able to simulate

the transport of trace gases and aerosols over large distances avoiding excessive numerical diffusion. Therefore, due to this

twofold requirement, the CHIMERE-2016 vertical mesh is defined as described below.

Regarding the vertical discretization, the user has three degrees of freedom:10

– the thickness of the first layer. The user can fix the top of the first model layer, by setting the top of the first model layer

in sigma coordinates : σ1 = 0.997 corresponds to a thickness of about 3 hPa for the first model layer, about 30 m.

– The number of layers, typically from 8 to 20 layers for the most common configurations of the model.

– The pressure of the top of the model, ptop, typically from 500 hPa for studies at urban/regional scales to 200 hPa for

continental/hemispheric scale studies.15

From these user-defined parameters, a preprocessing tool calculates a vertical grid as follows:

– From the surface to 800 hPa, the layer thickness (in hPa) increases exponentially

– From 800 hPa to the top of model, the layers are evenly distributed, with equal thickness for each layer.

This procedure outputs the pressure of the level tops, for a reference surface pressure pref of 1000 hPa. However, the model

levels need to adapt themselves to the variations of the surface pressure, essentially due to orography. This is ensured by scaling20

linearly the pressure levels between the surface pressure and the pressure at the top of model, ptop, producing two sequences

of coefficients ai and bi, such that the pressure at the top of level i is given by pi = aipref + bipsurf . These coefficients are

given by the following expressions:

ai =
ptop (p1− pi)
pref (p1− ptop)

(7)

25

bi =
p1 (pi− ptop)
pref (p1− ptop)

(8)

The linear scaling of the pressure levels by these two sequences of coefficients ensures that the pressure levels never cross each

other, and that their relative thickness stays the same even above high topography, as shown in Fig. 4.
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Figure 4. Model pressure levels with 20 vertical levels, thickness of the first model layer is 3 hPa, top of model set at 200 hPa. Pressure levels

are represented across an idealized mountain which top is located at 500 hPa.

4 Emissions

4.1 The anthropogenic emissions

4.1.1 Overall description

CHIMERE needs to be forced at least by input meteorological fields, and by anthropogenic emissions. A preprocessor for

anthropogenic emissions, named emisurf, is provided to the users. This preprocessor was historically developed for the down-5
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scaling and reformatting of the raw emissions from the EMEP emission inventory at 50 km resolution, but can be adapted by

users to any other raw dataset they need to use. The main steps for this are described in Menut et al. (2012, 2013a):

– A first step projects the annual masses from the “raw” EMEP grid to the CHIMERE grid. The spatial emission distri-

bution from the EMEP grid to the CHIMERE grid is performed using proxys like population density, as described by

Figs. 5a-d. Proxies used by emisurf for this process include land use data (either GLCF, USGS or GlobCover), large5

point source database (such as the EPER database for Europe), etc.

– Second, monthly, weekly and hourly profiles are prescribed to convert annual totals to hourly fluxes used as input for

CHIMERE. These factors are derived largely from data provided by the University of Stuttgart (IER) as part of the GEN-

EMIS project (Friedrich and Reis, 2004), and are available as data files from the EMEP model website, www.emep.int.

– A last step consists in converting the species available in the raw data into the model species. Generally, a minimum10

of seven species are available: CO, SOx, NOx, NH3, NMVOC, PM2.5 and PMcoarse (difference between PM10 and

PM2.5). In CHIMERE, depending on the chemical scheme, about 30 species are emitted. NOx is split into NO, NO2

and HONO. Usually, 5 to 10 % is assigned for NO2 emissions for all sectors, except for traffic emissions where a 20%

should assigned to NO2 for modern fleet (post 2010). For NMVOC, the VOC data used are derived from the detailed

United Kingdom speciation given in Passant (2002). For SOx, 99% is assigned to SO2 and 1% for primary sulphate to15

account for very fast and local sulphate production. The lumping procedure accounts for the reactivity of VOC species

following Middleton et al. (1990).

The vertical distributions were originally based upon plume-rise calculations performed for different types of emission

source which are thought typical for different emission categories, under a range of stability conditions (Vidic, 2002), but have

since been simplified and adjusted to reflect the more recent findings of (Bieser et al., 2011). The main changes have been for20

the residential sector where now 100% of the emissions are placed in the lowest model layer, reflecting the large dominance

of domestic combustion for this emission category. Also, emissions from large combustion facilities in SNAP sectors 1 and

4 corresponding to large industrial facilities burning fossil fuels are attributed to lower layers than in Vidic (2002), resulting

in enhanced concentrations of primary species such as NOx and SOx in the boundary layer, in better agreement with routine

surface observations, as discussed in Mailler et al. (2013).25

4.1.2 Recent changes

The main recent changes have been focused on the use of proxies to better reallocate in space the raw emissions. This special-

ization can be performed from the raw gridded data or directly from the annual country totals (Terrenoire et al., 2015).

The European Pollutant Release and Transfer Register (E-PRTR) data are used to precisely place the emissions from the main

industrial sources. E-PRTR is the Europe-wide register that provides easily accessible key environmental data from industrial30

facilities in European Union Member States and in Iceland, Liechtenstein, Norway, Serbia and Switzerland.

For road traffic emissions, a new spatial proxy was developed based on the correlation between the French bottom-up emis-

sion inventory at 1km resolution and different spatial databases. This work was extrapolated over the european domain. It used
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Figure 5. Downscaling strategy for the anthropogenic emissions

the best source of information among the following proxies: CORINE land cover (from the European Environment Agency),

road data of the ETISplus European project (European Transport policy Information System) for 2010 over Europe. ETISplus

combines data, analytical modelling with maps (GIS), a single online interface for accessing the data. Default European GIS

road data from EuroglobalMap, default worldwide GIS road data from Natural Earth data (http://www.naturalearthdata.com/),

and population database by Gallego (2010) over Europe and data from Center for International Earth Science Information5

Network (CIESIN) for the rest of the world. All of these data were not available on the whole domain. Therefore, three tiers of

information were defined to cover all countries with different levels of confidence:

– Countries covered by all the data: Iceland, Norway, Turkey, Bosnia Herzegovinia, Serbia, Montenegro, Kosovo, Mace-

donia, Albania and all the EU28 except Greece.

– Countries without CLC coverage but with ETIS or EuroglobalMap datas: Belarus, Ukraine, Moldavia and Greece10

– Other countries are only covered by the world roadmap and population data.
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For shipping emissions (SNAP 8), a proxy was developed using an inventory of shipping routes obtained from the US

National Center for Ecological Analysis and Synthesis (NCEAS). An inventory was developed for the year 2008 by Halpern

et al. (2015) but the dataset remains non-exhaustive, the data being collected only on voluntary vessels.

4.2 Mineral dust emissions

Mineral dust modelling is an important process for climate processes but also for air quality regional modelling. For many5

regions over the world, it becomes necessary to manage air pollution knowing the relative part of anthropogenic and natural

contributions. For this, even over small regions, it is important to have the same level of knowledge on mineral dust emissions as

for anthopogenic or biogenic emissions. In this new model version, many improvements were done for mineral dust emissions.

They are related to input databases, the emission schemes themselves and additional options to better take into the impact of

meteorological conditions on emissions.10

4.2.1 Soil, landuse and roughness length

For the calculation of mineral dust emissions, several variables have to be known: landuse, soil characteristics, aeolian rough-

ness length and erodibility. Originally, CHIMERE used a database limited to North Africa and the Arabian peninsula. For

simulations over Africa or Europe, this spatially limited database was considered adequate, Sahara being the major source in

this region. But for this new CHIMERE-2016 version, the goal is to enable calculations of mineral dust emissions anywhere15

in the world. It is then necessary to change all required databases and to move to global databases. A large part of this change

was already done in Menut et al. (2013c) for landuse, soil and roughness length. The soil and landuse used are now those

from NCAR USGS landuse dataset (Homer et al., 2004) and STATSGO-FAO soil dataset (Wolock, 1994). The roughness

length is estimated using the global 6km horizontal resolution GARLAP (Global Aeolian Roughness Lengths from ASCAT

and PARASOL) dataset (Prigent et al., 2012).20

In addition to these changes, the possibility to evaluate the soil erodibility based on satellite data was added. In the previous

versions, the erodibility was based on the landuse database: cropland, grassland, shrubland and barren or sparsely vegetated

areas were considered as erodible. In this case, constant percentages are applied for each landuse. While this possibility is

maintained in CHIMERE-2016, a new option uses the global erodibility dataset derived from MODIS, as presented in Grini

et al. (2005), and already included in CHIMERE and used, as described by Beegum et al. (2016). A mix between the two25

options was also added, making possible to use MODIS only over desert areas and the USGS landuses categories elsewhere.

4.2.2 The Kok’s scheme for mineral dust emissions

In this model version, the Kok mineral dust emissions parameterization is proposed, in addition to the Marticorena and Berga-

metti (1995) and Alfaro and Gomes (2001) schemes.
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The Kok scheme is fully described in the articles Kok et al. (2014b), Kok et al. (2014a) and Mahowald et al. (2014). The

vertical dust flux is calculated as:

Fd = Cd fbare fclay
ρa
(
u2
∗−u2

∗t
)

u∗st

(
u∗
u∗t

)Cα
u∗st−u∗st0

u∗st0 (9)

where fbare and fclay represent the relative fraction of bare soil and clay soil content, respectively. The flux is calculated only

if u∗ > u∗t. The threshold friction velocity, u∗t, is calculated using the Iversen and White (1982) or the Shao and Lu (2000)5

scheme (a user’s choice). The corresponding u∗st is this friction velocity but for a standard atmospheric density ρa0=1.225 kg

m−3:

u∗st = u∗t

√
ρa
ρa0

(10)

u∗st0 represents u∗st for an optimally erodible soil and was chosen as u∗st0=0.16 m s−1 in Kok et al. (2014b). The dimen-

sionless coefficient Cα is chosen as Cα=2.7.10

The dust emission coefficient Cd represents the soil erodibily as:

Cd = Cd0 exp
(
−Ce

u∗st−u∗st0
u∗st0

)
(11)

with the constant dimensionless coefficients Ce=2.0 and Cd0=4.4 10−5.

The vertical dust flux is integrated over the whole size distribution. This flux is thus redistributed into the model dust size

distribution as:15

dVd
dlnDd

=
Dd

cv

[
1 + erf

(
ln(Dd/Ds)√

2lnσs

)]
exp

[
−
(
Dd

λ

)3
]

(12)

with Vd the volume of mineral dust aerosols for each mean mass median diameter Dd, Cv=12.62 µm, σs=3.0, Ds=3.4 µm

and λ=12.0 µm.

4.2.3 Impact of vegetation, humidity and rain on dust emissions

As possible emissions areas are extended, it is necessary to revise the potential impact of vegetation, soil humidity and rain on20

emissions.

To take into account the impact of vegetation, representing the variations of the aeolian roughness length becomes necessary

for simulations areas with a significant annual cycle of the vegetation. In this model version, the monthly vegetation fraction is

used to ponderate the emission flux when vegetation grows.
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It is also necessary to take into account the possibility to inhibit or moderate dust erosion in case of rainfall. This is done in

the following two ways. First, during a precipitation event, the mineral dust emissions are completely cancelled. Second, dust

erosion not reinitiated immediately after a precipitation event, the soil being potentially crusted (Ishizuka et al., 2008). To take

into account this latter effect, a simple function describing a factor fp is applied to moderate the dust emissions fluxes when a

precipitation is diagnosed as:5

fp = Edust

(
1− exp

(−2π∆tp
τ

))
(13)

with ∆tp the time since the last precipitation event and τ the period after which the surface mineral dust fluxes Edust is fully

taken into account, considering that the inhibiting effect of precipitation is finished. For this study, ∆tp is in hours and τ=12.

This function is displayed in Fig. 6.

Figure 6. Function defined to moderate the mineral dust emissions fluxes after a precipitation event.

In the absence of precipitation, the soil moisture may also inhibit mineral dust erosion. This effect is taken into account10

using the Fecan et al. (1999) parameterization. This scheme considers that soil moisture will increase the threshold friction

velocity, uT∗ , used to determine if erosion occurs or not. To distinguish between soil conditions, the dry and wet threshold

friction velocities are defined, and noted uTd∗ and uTw∗ , respectively. uTw∗ is estimated as a possible increase of uTd∗ depending

on the modelled gravimetric soil moisture w (in kg.kg−1):

uTw∗ = f(w)uTd∗ (14)15

In the model, the dry treshold friction velocity, uTd∗ is calculated following the scheme of Shao and Lu (2000). The f(w)

factor is estimated as:





f(w) = 1 for w < w′

f(w) =
[
1 + A (w−w′)b′

]0.5
for w > w′

(15)

14
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where A and b′ are constants to estimate, and w′ corresponds to the minimum soil moisture from which the threshold

velocity increases. The values of A, b′ and w′ are dependent on the soil texture. For A and b′, the values are fixed to A=1.21

and b′=0.68. Using measurements data, Fecan et al. (1999) showed that the value of w′ is mainly dependent on the clay content

of the soil and proposed the following fit:

w′ = 0.0014(%clay)2 + 0.17(%clay) (16)5

Note that in equation 15, the gravimetric soil moisturew has to be expressed in %,w′ being in % in equation 16 (a conversion

is done from kg/kg to %).

4.3 Primary particulate matter resuspension

The resuspension process is important for particulate matter and may induce a large increase of the emission flux in case of dry

soils, for locations where traffic and industries produce particles that may be deposited on the ground and therefore become10

available for resuspension. In this model version, the resuspension flux is active only for cells containing an urbanized surface.

The flux is affected to Primary Particulate Matter (PPM) emissions only and thus considered in the model as an anthropogenic

process.

The formulation is derived from the bulk formulation originally proposed by Loosmore (2003). The resuspension rate λ, in

s−1, is expressed as:15

λ= 0.01
u1.43
∗
τ1.03

(17)

where τ is the time after the start of resuspension. This time is taken into account considering that particles are first deposited

then resuspended. The detail of the processes leading to resuspension are essentially unknown, and we assume here that the

available concentration of particulate matter depends only on the wetness of the surface. In this empirical view, the resuspension

flux is assumed to be:20

F = P f(w)u1.43
∗ (18)

where f(w) is a function of the soil water content and P is a constant tuned in order to approximately close the PM10 mass

budget over Europe estimated in Vautard et al. (2005). It was found to give a correct amount of additionnal PM10. In this

model version, P is approximated as P = 4.7210−2µgm−2s−1 if we consider European mean conditions with a soil water

content of 25% and a friction velocity of u∗=0.5 m.s−1.25

The soil water function f(w) is estimated as:

f(w) =
ws−w
ws−wt

(19)
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where wt = 0.1 is a soil moisture threshold below which resuspension is activated, and ws is the maximum of soil moisture

ponderated by the ratio of water and soil densities, as:

ws = wmax
Dwater

Dsoil
(20)

with wmax = 0.3 is a constant value representing the maximum soil moisture value, Dwater is the water density (assumed

to be unity) and Dsoil is the dry porous soil density. Dsoil is itself estimated as:5

Dsoil = (1− satsm)Dmine (21)

with satsm=0.4 the saturation volumetric moisture content and Dmine=2.5, the non-porous soil density.

This resuspension flux is calculated only for model cells having a non-zero urban landuse. This flux is thus ponderated in the

whole cell by considering the relative surface of the urban area. Finally, the flux is projected onto the model size distribution

considering that 2/3 of the flux is in the fine mode, 1/3 in the coarse mode. The fine and coarse modes are those defined for the10

anthropogenic emissions fluxes for particulate matter.

5 Processes and chemistry

5.1 Integration of the SAPRC chemical scheme

5.1.1 The general gas-phase mechanism

Two gas-phase chemical schemes were implemented in the CHIMERE model. The most detailed chemical scheme, called15

MELCHIOR1, represents the oxidation of around 80 gaseous species according to 300 reactions. The other mechanism, called

MELCHIOR2, is a reduced version of MELCHIOR1 developed using chemical operators (Derognat et al., 2003; Carter, 1990).

MELCHIOR2 represents the oxidation of around 40 gaseous species according to 120 reactions. These chemical mechanisms

are described in detail in Menut et al. (2013b). Comparisons between MELCHIOR2 and tree detailed mechanisms (MCM,

Jenkin et al. (2003) ; SAPRC99, Carter (2000) ; GECKO-A, Aumont et al. (2005)) show a good agreement between the20

chemical schemes, with differences in HCHO yields under low and high NO conditions lower than 20% between the simulated

results (Dufour et al., 2009). SAPRC99 chemical mechanism had already been used in CHIMERE for a few studies (Lasry

et al., 2007; Coll et al., 2009) but had never been distributed in a previous CHIMERE releases.

Since the development of the MELCHIOR mechanisms in 2003, progresses have been made in atmospheric chemistry,

particularly concerning the VOC ozonolysis. One of the most up to date chemical scheme currently available in the literature is25

the SAPRC-07 (Carter, 2010a). This mechanism is widely used and evaluated against chamber data (≈2400 experiments). The

detailed SAPRC-07 chemical mechanism contains 207 species and 466 reactions. This detailed mechanism has been used to

develop several reduced mechanisms designed for CTM applications (Carter, 2010b). The less reduced mechanism, SAPRC-

07A, has been implemented in the 2016 CHIMERE model. This chemical scheme contains 72 species and 218 reactions. Two
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CHIMERE simulations using SAPRC-07A and MELCHIOR2 chemical schemes respectively were compared with AirBase

measurements of NOx and ozone over Europe during summer 2005. The two chemical schemes were found to provide a good

correlation with ozone measurements (Pearson’s correlation rate 0.71 for both mechanisms), with a slightly smaller bias for

ozone concentrations obtained using SAPRC-07A (8.19 ppb versus 9.29 ppb, Menut et al. (2013b)).

5.1.2 The chlorine mechanism5

Over the past decade, several studies have shown that halogens (chlorine, bromine, iodine) chemistry could influence ozone

concentrations in the troposphere. A recent review (Simpson et al., 2015) presents the state of art on this topic. If the role

of halogen chemistry was traditionally considered limited to the marine boundary layer, recent observations have shown that

significant ClNO2 concentrations (from 80 ppt to 2000 ppt) can occur in various environments. This compound can act as

a nitrogen reservoir with a long lifetime allowing its long-range transport. In previous version of CHIMERE model, it was10

possible to have the chemical composition (Na, Cl, H2SO4) of sea salt emissions based on mean composition described in

Seinfeld and Pandis (1997). The chlorine chemistry is not described in MELCHIOR chemical schemes but Carter (2010b)

proposed in SAPRC-07A a chlorine mechanism with 9 inorganic species and 3 products formed by the reactions with VOCs.

In SAPRC-07A, the chlorine chemistry is represented by 68 reactions, which have been implemented in CHIMERE-2016 only

if the SAPRC-07A chemichal mechanism is chosen by the user.15

5.2 Evolution of the aerosol scheme

5.2.1 Disretization of the aerosols size distribution

The CHIMERE model accounts for the size distribution of the aerosols using a size-bin approach: the aerosol particles for each

of the model species are distributed in N size bins, covering a diameter range from Dmin to Dmax. Given these three user-

defined parameters, a preprocessor compute a sequence (di)i=1,N+1 of cutoff diameters that meets the following requirements:20

– 2.5µm and 10µm are retained as cutoff diameters: two indices i1 and i2 such that di1 = 2.5µm and di2 = 10µm must

exist

– The sequence of the cutoff diameters covers exactly the size interval requested by the user: d1 =Dmin and dN+1 =

Dmax

The first requirement is set to allow a meaningful evaluation of PM2.5 and PM10 in the model, since these quantities are25

typically available from routine measurements.

The default (and recommended) values of the extreme diameters are Dmin = 0.01µm and Dmax = 40µm. Using these

values, the produced size distributions for various values of the number of intervals N are shown in Tab. 1 according to the

requested number of bins, N. If N ≥ 12, then the ratio of two successive cut-off diameters is always such as di+1/di ≤ 2 : all

particles within a single size bin have comparable diameters at least within a factor 2, which is a good way to ensure that all the30

size-depending processes affecting the aerosols (sedimentation, coalescence etc.) are treated in a realistic way. However, when
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N= 3 N= 4 N= 5 N= 6 N= 7 N= 8 N= 9 N= 10 N= 11 N= 12 N= 13 N= 14 N= 15 N= 16

1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

2 2.50 0.16 0.06 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02

3 10.00 2.50 0.40 0.16 0.09 0.09 0.06 0.05 0.05 0.04 0.03 0.03 0.03 0.03

4 40.00 10.00 2.50 0.63 0.27 0.27 0.16 0.11 0.11 0.08 0.06 0.06 0.05 0.05

5 / 40.00 10.00 2.50 0.83 0.83 0.40 0.23 0.23 0.16 0.12 0.12 0.09 0.07

6 / / 40.00 10.00 2.50 2.50 1.00 0.52 0.52 0.32 0.21 0.21 0.16 0.12

7 / / / 40.00 10.00 5.00 2.50 1.14 1.14 0.63 0.40 0.40 0.27 0.20

8 / / / / 40.00 10.00 5.00 2.50 2.50 1.25 0.73 0.73 0.48 0.34

9 / / / / / 40.00 10.00 5.00 5.00 2.50 1.35 1.35 0.83 0.55

10 / / / / / / 40.00 10.00 10.00 5.00 2.50 2.50 1.44 0.92

11 / / / / / / / 40.00 20.00 10.00 5.00 3.97 2.50 1.51

12 / / / / / / / / 40.00 20.00 10.00 6.30 3.97 2.50

13 / / / / / / / / / 40.00 20.00 10.00 6.30 3.97

14 / / / / / / / / / / 40.00 20.00 10.00 6.30

15 / / / / / / / / / / / 40.00 20.00 10.00

16 / / / / / / / / / / / / 40.00 20.00

17 / / / / / / / / / / / / / 40.00
Table 1. Values of the diameter bins obtained for Dmin = 0.01µm, Dmax = 40µm, and twelve different values of N .

calculation speed is a critical requirement, for example for operational prevision, the number of size bins could be lowered to

N = 6, still ensuring that di+1/di ≤ 4

5.2.2 Wet diameter and wet density of aerosols

In many processes, the diameter and the density of aerosols are used (deposition, absorption, coagulation, etc...). These pro-

cesses have to take into account that the diameter and the density of aerosols change with humidity due to the amount of water5

absorbed into the particles. Therefore, the notion of wet diameter and wet density was introduced in CHIMERE-2016. Particles

are distributed between bins according to their dry diameter. The wet diameter of the particles is calculated as a function of

humidity and the composition of the particle.

To compute the wet density and wet diameter for each aerosol size bin, the amount of water in each bins is computed with

the “reverse mode” of ISORROPIA (Nenes et al. (1998)) by using the composition of particles, assuming that only sulphate,10

nitrate, ammonium and sea salts have a high enough hygroscopicity to absorb a significant amount of water. The density of the

aqueous phase of particles is computed according to composition following the method of Semmler et al. (2006). The density

and mass of the inorganic aqueous phase (sulphate, nitrate, ammonium and sea salts and water) and the density and mass of
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other compounds (dust, organics, black carbon, etc...) are used to compute the total density of the particle and then its wet

diameter, assuming internal mixing for each size bin.

5.2.3 Absorption

Absorption is described by the “bulk equilibrium” approach of Pandis et al. (1993). In this approach, all the bins for which

condensation is very fast are merged into a “bulk particulate phase”. Following Debry et al. (2007), a cutting diameter of5

1.25µm is used to separate bins which are inside the “bulk particle” (with a diameter lower than the cutting diameter) from

other bins.

Thermodynamic models are used to compute the partitioning between the gas phase and the bulk particle phase and estimate

the gas-phase concentrations at equilibrium. For semi-volatile inorganic species (sulphate, nitrate, ammonium), concentrations

Geq at equilibrium are calculated using the thermodynamic module ISORROPIA (Nenes et al. (1998)). This model also de-10

termines the water content of particles. Equilibrium concentrations for the semivolatile organic species are related to particle

concentrations through a temperature dependent partition coefficient Kp (in m3µg−1) (Pankow (1994)).

Following Pandis et al. (1993), the mass of compounds condensing into particles, ∆Ap, is redistributed over bins according

to the kinetic of condensation into each bin. For evaporation, the mass of compounds evaporating from each bin is proportional

to the amount of the compounds in the bin.15

If the variation of particulate bulk concentration of compound i, ∆Ap,i, is greater than 0 (condensation):

∆Abinp,i =
kbin∑
j k

j
i

∆Ap,i (22)

with kbini the kinetic of condensation given by Seinfeld and Pandis (1997):

kbini =N bin
2πDbin

p DiMi

RT
f(Kn,α) (23)

withN bin the number of particles inside the bin,Dbin
p the mean diameter of the bin,Di the diffusion coefficient for species i in20

air, Mi its molecular weight and f (Kn,α) is the correction due to noncontinuum effects and imperfect surface accomodation.

f (Kn,α) is computed with the transition regime formula of Fuchs and Sutugin (1971).

If the variation of particulate bulk concentration of compound i, ∆Ap,i, is lower than 0 (evaporation):

∆Abinp,i =
Abinp,i∑
jA

j
p,i

∆Ap,i (24)

If a particle shrinks or grows due to condensation/evaporation, the mass of this particle has to be redistributed over diameter25

bins. The mass redistribution algorithm of Gelbard and Seinfeld (1980); Seigneur (1982) is used.
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5.2.4 Coagulation

The flux of coagulation Jbcoag,i of a coumpound i inside a bin b is computed with the size binning method of Jacobson et al.

(1994):

Jbcoag,i =
b∑

j=1

b∑

k=1

f bj,kKj,lA
j
p,iN

k

−Abp,i
∑

Kb,jN
k (25)

with Nk the volumic number of particles in bin k, Kj,l the coagulation kernel coefficient between bins i and j and f bj,k the5

partition coefficient (the fraction of the particle created from the coagulation of bins j and k which is redistributed into bin b).

The coagulation kernel and the partition coefficients are calculated as described in Debry et al. (2007).

5.2.5 Wet deposition

For the in-cloud scavenging of particles, the deposition of particles is assumed to be proportional to amount of water lost by

precipitations. The deposition flux is written as:10

[
dQkl
dt

]
=−εlPr

wlh
Qkl (26)

with Pr the precipitation rate released in the grid cell (kg m−2 s−1), wl the liquid water content (kg m−3), h the cell thickness

(m) and εl an empirical uptake coefficient (in the range 0 - 1) currently assumed to be 1. l and k are respectively the bin and

composition subscripts.

For the below-cloud scavenging of particles, particles are scavenged by raining drops following Henzig et al. (2006). A15

polydisperse distribution of raining drops is applied:

N(R) = 1.9810−5 AP−0.384R2.93exp
(
−5.38P−0.186R

)
(27)

where

A = 1.047− 0.0436 ln P + 0.00734 (ln P )2 (28)

with P the precipitation rate in mm/h and R the radius of the droplet. The below-cloud scavenging rate is written:20

[
dQkl
dt

]
=−Qkl

∫

R

πR2ug(R)E(R,rl)N(R)dR (29)

with R, the radius of the raindrop (in m), rl the radius of the particle (in m), ug the terminal drop velocity (in m/s), E(R,rl)

the collision efficiency of a particle with a raindrop, N(R) (in m−4) the raindrop size distribution.
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5.3 Online calculation of photolysis rates using the Fast-JX module

5.3.1 Modelling strategy

CHIMERE-2016 includes the module Fast-JX version 7.0b (Wild et al., 2000; Bian et al., 2002) for the online calculation

of the photolysis rates. Fast-JX is a module which solves the equations of radiative transfer in an atmospheric column taking

into account the Solar zenithal angle, the vertical profile of ozone and water vapor concentrations, the ice- and water- clouds,5

the radiative effect of scattering and absorption by aerosols and the surface albedo. Taking these factors (and their real-time

simulated variations) into account, Fast-JX computes the photolysis rates for all the relevant photochemical reactions that

has been designed in order to be easily introduced in Chemistry-transport models, which has already been done in various

CTMs such as PHOTOMCAT (Voulgarakis et al., 2009), Polair3D (Real and Sartelet, 2011), UKCA (Telford et al., 2013) and

GEOS-Chem (Eastham et al., 2014).10

CHIMERE-2013 did not take into account all of these processes (Menut et al., 2013b), relying instead on a very simplified

calculation of the photolysis rates, as shown in Table 2. The photolysis rates were evaluated from tabulated values using

TUV (Madronich, 1987), depending only on the solar zenithal angle and the altitude. These tabulated values were calculated

assuming a vertical profile for ozone that was typical of the northern hemisphere midlatitudes, neglecting the effect of the

aerosols, and assuming a constant and uniform surface albedo. The effect of clouds was parameterized as an exponential15

reduction of the photolysis rates as a function of the cloud optical depth. While this set of approximations was acceptable when

the CHIMERE model was used as boundary-layer regional CTM for locations in Europe, this had strong limitations for its

use for longer-term simulations including long-range transport in the free troposphere over geographical domains including

polar and/or tropical zones. Therefore, the Fast-JX module has been included in CHIMERE-2016. Photolysis rates for the

photodissociation of ozone and nitrogen dioxide as computed by the Fast-JX model inside CHIMERE have been compared20

favorably to in situ measurements at the island of Lampedusa (Italy), including in presence of aerosols (Mailler et al., 2016)

CHIMERE-2013 CHIMERE-2016

SZA 3 3

Altitude 3 3

Clouds parameterized 3

Tropospheric ozone column Constant profile 3

Stratospheric ozone column Constant profile
Month- and latitude-

dependant climatology

Water-vapor concentration Constant profile 3

Aerosol effect 7 3

Variable albedo 7 3

Table 2. Taking into account the various factors affecting the photolysis rates in CHIMERE-2013 and CHIMERE-2016
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5.3.2 surface albedo

The surface albedo in the near-UV spectral region, which is determinant for the calculation of photolysis rates Dickerson et al.

(1982), is highly variable according to the landuse and to the presence or absence of snow. It is worth noting at that point that

the albedo of all the continental and oceanic surfaces is smaller than 0.1, while the albedo of snow ranges from 0.3 to over

0.8 according to the type of landuse. Therefore, the absence/presence of snow will modulate very substantially the values of5

the modelled photolysis rates, and therefore the concentration of trace gases such as ozone. Even though strong ozone peaks

generally occur in summertime in a context of strong anthropogenic NOx production and in the absence of snow, it has been

shown recently that strong ozone peaks can occur in wintertime over the continental United States in zones of oil and gas

extraction due to the combination of the strong anthropogenic concentrations of VOCs in a very shallow boundary layer with

relatively strong photolysis rates due to the high surface albedo (Edwards et al., 2014; Schnell et al., 2009). It is therefore10

important that CTMs take into account the impact of snow on surface albedo, in order to be able to reproduce correctly such

cases.

The surface albedo in the UV band in CHIMERE-2016 is evaluated according to Laepple et al. (2005) in the absence of

snow (tested as snow depth less than 1cm), and from Tanskannen and Manninen (2007) in the presence of snow, tested as snow

depth greater than 10cm. Values are displayed in Table 3.15

# Landuse albedo for snow

< 1cm > 10 cm

1 Agricultural land / crops 0.035 0.376

2 GrasslandLanduse type 0.04 0.720

3 Barren land/bare ground 0.10 0.836

4 Inland Water 0.07 -

5 Urban 0.035 0.3

6 Shrubs 0.05 0.558

7 Needleaf forest 0.025 0.278

8 Broadleaf forest 0.025 0.558

9 Ocean 0.07 0.836
Table 3. Tabulated values from Laepple et al. (2005) and Tanskannen and Manninen (2007) used for the calculation of the albedo in the UV

band. In the presence of sea-ice over ocean, the albedo of the ice surface is assumed equal to the Tanskannen and Manninen (2007) value

for > 10 cm of snow on barren land.

The snow depth is read from the WRF or ECMWF meteorological inputs, if available. If any other model is used, the snow

cover will be assumed inexistent. If the snow-cover is thinner than 1cm in the model, the albedo is assumed to be that of

dry land. If the snow-cover is thicker than 10cm, the albedo is assumed to be that of snow-covered land. In-between, a linear

interpolation is performed. Even though the case of sea-ice is not explicitly treated in Tanskannen and Manninen (2007), the
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assumption is made in CHIMERE-2016 that the albedo of sea-ice is the same as that of a thick layer of snow covering barren

land.

5.3.3 Implementation

The physical calculations performed by Fast-JX are split in two steps.

First, the Legendre coefficients for the scattering phase function for all aerosol species and diameter bin are calculated using5

Michael Mischenko’s spher.f code (Mischenko et al., 2002), assuming sphericity of the aerosol particles. This calculation is

performed for each of the nspec×nbins species, and for the five wavelengths that are used for the Mie scattering processes in

Fast-JX. This step is performed once and for all before the first simulation step, and lasts from a couple of seconds to a couple

of minutes according to the number of aerosol species and diameter bins. The refractive indices reproduced in Table 4 are the

ones provided along with the model, essentially based on results from the ADIENT project. However, the specification of these10

parameters is in a parameter file, and can be changed by the user to other values. In the same way, the user can easily introduce

more species in the optical treatment for specific studies, e.g. volcanic ashes.

Species Real part of the refractive index Imaginary part of the refractive index

λ 200nm 300nm 400nm 600nm 1000nm 200nm 300nm 400nm 600nm 1000nm

PPM 1.53 1.52 1.52 1.51 1.50 8.0·10−3 8.0·10−3 8.0·10−3 8.0·10−3 8.0·10−3

OCAR 1.60 1.60 1.63 1.63 1.63 1.2·10−1 1.2·10−1 7.7·10−2 1.2·10−2 7.0·10−2

BCAR 1.85 1.85 1.85 1.85 1.85 7.1·10−1 7.1·10−1 7.1·10−1 7.1·10−1 7.1·10−1

SALT 1.38 1.38 1.37 1.36 1.35 8.7·10−7 3.5·10−7 6.6·10−9 1.2·10−8 2.6·10−5

SOA 1.56 1.56 1.56 1.56 1.56 3.0·10−3 3.0·10−3 3.0·10−3 3.0·10−3 3.0·10−3

DUST 1.53 1.53 1.53 1.53 1.53 5.5·10−3 5.5·10−3 2.4·10−3 8.9·10−4 7.6·10−4

H2SO4 1.50 1.47 1.44 1.43 1.42 1.0·10−8 1.0·10−8 1.0·10−8 1.3·10−8 1.2·10−6

HNO3 1.53 1.53 1.53 1.53 1.53 6.0·10−3 6.0·10−3 6.0·10−3 6.0·10−3 6.0·10−3

NH3 1.53 1.52 1.52 1.52 1.52 5.0·10−4 5.0·10−4 5.0·10−4 5.0·10−4 5.0·10−4

WATER 1.35 1.34 1.34 1.33 1.33 2.0·10−9 2.0·10−9 1.8·10−8 3.4·10−8 3.9·10−7

Table 4. Refractive indices for the main aerosol species in CHIMERE at 200, 300, 400, 600 and 1000 nm

After the preprocessing phase, at each time step and in each model column, the Fast-JX module resolves the radiative transfer

in the model atmospheric column, computing the actinic fluxes at each model level and integrating them over N wavelength

bins in order to produce accurate photolysis rates. In the configuration adopted for CHIMERE-2016, N is set to 12, which15

is the value recommanded by Fast-JX developers for tropospheric studies. These 12 wavelength bins include the 7 standard

Fast-J wavelength bins from 291 nm to 850 nm, as described in Wild et al. (2000). The 7 standard Fast-J wavelength bins are

essentially concentrated from 291 nm to 412.5 nm which is the spectral band relevant for tropospheric photochemistry. Fol-

lowing the recommandations of Fast-JX model developers, these 7 standard wavelength bins are complemented by 5 additional
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wavelength bins, from 202.5 nm to 291 nm, which are only relevant in the upper tropical troposphere. In a typical simulation

framework, it has been found that the increase in computational time relative to the simulation with tabulated photolysis rates

is below 10% (Mailler et al., 2016).

5.4 Online calculation of lidar profiles

During the model integration, some additional diagnostic variables are estimated: (i) the Clouds Optical depth (COD) and the5

Aerosol Optical Depth (AOD) using the FastJX module, and (ii) the lidar profiles.

The lidar profiles are calculated using the aerosols concentrations contributions only, as detailed in Stromatas et al. (2012).

They are proposed as output after a simulation and are designed to be directly comparable to ground-based or spatial lidars.

Three different profiles are calculated both in Nadir and Zenith lidar configurations: (i) the Attenuated Scattering Ratio, R′(z),

(ii) β′(z,λ) and β′m(z,λ), respectively the total and molecular attenuated backscatter signal.10

By definition, R′(z) is equal to 1 in absence of aerosols/clouds and when the signal is not attenuated. In the presence of

aerosols, R′(z) would be greater than one. Following Winker et al. (2009), this ratio is expressed as:

R′(z) =
β′(z)
β′m(z)

(30)

The total attenuated backscatter signal β′(z,λ) is calculated as:

β′(z,λ) =
[
σsca

m (z,λ)
Sm(z,λ)

+
σsca

p (z,λ)
Sp(z,λ)

]
15

exp


−2




TOA∫

z

σext
m (z′,λ)dz′ (31)

+ η′
TOA∫

z

σext
p (z′,λ)dz′




 (32)

and the molecular attenuated backscatter signal β′m(z,λ) as:

β′m(z,λ) =
σsca

m (z,λ)
Sm(z,λ)

· exp


−2

TOA∫

z

σext
m (z′,λ)dz′


 (33)

σ
sca/ext
p (z,λ) and σsca/ext

m (z,λ) are the extinction/scattering coefficients for particles and molecules (in km−1). Sm and Sp20

are the molecular and particular extinction-to-backscatter ratios (in sr). η′(z) represents the particles multiple scattering and z

represents the distance between the emitter and the studied point. Note that for the case of a space lidar the integration begins

from the top of the atmosphere (TOA) while for a ground lidar the integration begins from 0 (ground level) to z. Further details

about these calculations are provided in Stromatas et al. (2012).
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6 Model scores for a standard European simulation

The performance of CTMs is often evaluated by comparing simulation results to data of measurements, either from routine

networks (Solazzo et al., 2012a, b) or from dedicated field campaigns (e.g. Menut et al. (2015); Petetin et al. (2015)). Simon

et al. (2012) presented an overview of performance evaluation studies for a large set of models and studied cases.

(a) (b) (c)

(d) (e) (f)

Figure 7. Performance statistics for the main model species. The numbers on the right axes give the Person’s correlation, MFE, and MFB,

while the box plots show the variability among the EMEP stations. The boxes extend from the lower to upper quartile values of the data. The

center lines show the medians, and the red squares show the means over stations. The whiskers indicate the 5 and 95 percentile values.

In this study statistical validation with data of measurements was performed for two 3-month long simulations with CHIMERE-5

2016: summer (June to August 2008) and winter (January to March 2009). The simulation domain covers western and central

Europe at 0.5◦ resolution, with 8 vertical sigma levels between 997 and 500hPa. The meteorological model used was WRF

3.6.1 with the same physical options as in (Menut et al., 2015), at 45 km resolution and boundary conditions from GFS analyses.

The emission data were those from EMEP at 0.5◦, and the boundary conditions for the concentrations from the LMDz-INCA

model for gases and chemically active aerosols and from the GOCART model for dust. The simulation was performed with the10

MELCHIOR2 chemical mechanism for gaseous species, 10 bins for aerosol size distribution and the SOA scheme of Bessag-

net et al. (2008), 5-min chemistry time step, and the Van Leer numerical scheme for both horizontal and vertical transport.
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Species Winter Summer

O3 98 96

NO2 39 35

SO2 14 29

PM10 28 22

PM25 23 17
Table 5. Number of EMEP stations per species and per season used for performance statistics. Stations CH01 CH04 CH05 DE03 DE08

AT05 AT48 IT01 IT04 ES78 DE44 were excluded from the analysis due to their topography difficult to simulate with a 0.5◦resolution.

The (Wesely, 1989) aerosol dry deposition and (Loosmore, 2003) resuspension schemes were used. The online coupling with

ISORROPIA model was not activated, and the precalculated lookup tables were used instead (Menut et al., 2013b).

The statistical scores were computed against the EMEP surface concentration measurements for main gaseous and aerosol

species, after filtering out the stations with complex topography (CH01 CH04 CH05 DE03 DE08 AT05 AT48 IT01 IT04 ES78

DE44) that cannot be simulated appropriately at 0.5◦ resolution5

Figure 7 shows the performance statistics for the main model species. The number of EMEP stations used for each species

for winter and summer is shown in Table 5. The standard metrics used for air quality modeling (Simon et al., 2012) were

employed, namely the Pearson’s correlation PCOR, the mean fractional error MFE, and the mean fractional bias MFB.

Ozone shows the best scores among all the species, both for summer and winter, with PCOR= 0.69, MFE = 19.6%,

MFB = 11.4% in summer and PCOR= 0.72, MFE = 24.9%, MFB = 14.8% in winter. It also shows the smallest vari-10

ability of scores among the stations (96 available stations in summer and 98 in winter). As noted by Simon et al. (2012), the

ozone overestimation often reported for CTMs is related to the averaging over the hours with high and low concentrations,

so the scores are dominated by performance at low concentrations, which occur much more often than high concentrations.

Indeed, the MFB computed from daily maximum ozone concentrations in this study is quite lower: 1.5% for summer and 3.6%

for winter.15

The NO2 shows quite larger MFE: 54.9 % in winter and 60.4% in summer with a large variability of both MFE and MFB

between stations. The bias is negative in winter, slightly positive in summer but with a high negative values at some stations.

The model resolution of 0.5◦might be not enough to represent the large NOx emission gradients, even when measured at the

background rural sites. Also, as discussed by refbterrenoire2015, the negative bias can be related to the general underestimation

of the emissions in the inventory used. This is in agreement with the relatively high correlation: 0.65 in winter and 0.41 in20

summer.

The SO2 shows the largest MFE for both summer (74.5%) and winter (80.2%) and quite low correlation in summer (0.20).

It shows positive bias in winter: MFB = 35.5%. The difficulty of SO2 simulation can be related to the emission profile, in

particular the vertical distribution of emitted species (Pirovano et al., 2012; Mailler et al., 2013).

The performance for PM is affected by compensating effects of several chemical components, such as dust, primary organics25

and secondary species like sulphates, nitrates, and SOA.
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The PM10 concentrations are generally overestimated in winter (MFB = 15.6%). The particulate nitrate HNO3 and am-

monium NH4 contribute to this overestimation. The correlation values are lower in winter (0.46) and summer (0.25) than for

the whole year (and hence in autumn in spring), as reported by refbterrenoire2015. In summer the PM10 bias is quie low

MFB = 2.8%, and the MFE (40.0 %) shows small variability between the stations.

The PM25 concentrations show slightly larger overestimation than PM10. The winter correlation is higher though (0.60 vs5

0.46), and its variablility between the stations is smaller. This might indicate that the dust, whose emissions are very sensitive

to the wind speed, contribute to the PM10 errors in winter. As suggested by refbterrenoire2015, the PM25 overestimation is

likely to be related to the overestimation of sulphate.

The EPA guidelines, (e.g. Boylan and Russel (2006)), define the performance goals and criteria to be attained by air quality

models. The performance goal is attained for particulate matter when the MFE is less or equal to 50%, and |MFB| is less than10

30%. The performance criteria are attained when the MFE is less or equal to 75%, and |MFB| is less than 60%.

The PM10 simulation satisfies the performance goal for both summer and winter. As for PM25, it satisfies the performance

goal in terms of MFB for both summer and winter and in terms of MFE in summer, but fails in terms of MFE in winter

(MFE = 53.4%). However it does satify the performance criteria for both seasons.

7 Application to the Puyehue-Cordon Caulle eruption (June 2011)15

A simulation with the present version of CHIMERE has been performed for the southern hemisphere, from May 15 to June

30, 2011, a period covering the eruption of Puyehue-Cordon Caulle (Chile). This eruption has emitted an important plume

containing volcanic ashes and sulphur dioxide into the troposphere and the lower stratosphere. This plume has had severe

consequences on air traffic over Argentina as well as other countries in the southern hemisphere. While the eruption began

on June 4, the plume went all around the southern hemisphere and was back in the vicinity of the emission source by June20

14 (Global Volcanism Program, 2013; Klüser et al., 2013). This volcanic eruption case provides a perfect testbed to evaluate

the new abilities of the CHIMERE model to simulate as accurately as possible transport at hemispheric scale, including cases

where the transported plume undergoes a complete circumpolar trajectory around the South Pole.

7.1 Model configuration

The meteorological simulation has been performed using the WRF meteorological model, version 3.5.1, on a simulation domain25

covering most of the southern hemisphere at a resolution of about 55 x 55 km at 45◦S.

The CHIMERE model has been used in the following configuration :

– 20 vertical levels from the surface to 200 hPa

– MELCHIOR-2 chemical mechanism

– 250x250 horizontal domain centered at the south pole and covering the entire extratropical southern hemisphere30

– Horizontal resolution : 65km x 65km (at the pole), 55 x 55 km (at 45◦S), 36 x 36 km at at 25◦S.
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– Including volcanic emissions of SO2 and volcanic ashes

7.2 Volcanic emissions

The total mass flux emitted in the form of particles has been represented according to Mastin et al. (2009), using the following

equation,

V̇ =
(
H

2.00

) 1
2.41

Ṁ = ρV̇ (34)5

where H is the column height expressed in km, V̇ is the volume flux expressed in m3 s−1, Ṁ is the mass flux in kgs−1 and

ρ= 2500kgm−3 is the ash density. The altitude of the ash column has been taken from Collini et al. (2013), and is reproduced

here in Table 6. Only the fine fraction of the emissions, with particle diameter smaller than 63µm has been included. The

conversion from the total emitted mass flux has been performed using a conversion factor m63 taken from Mastin et al. (2009)

for S2 type volcanoes. The particles emitted with a diameter greater than 80µm have not been considered because they are not10

supposed to be relevant for long-range transport due to their rapid sedimentation.

The emitted ashes have been distributed evenly from the altitude of the crater (2200 m.a.s.l) to the altitude of the top of the

column, obtained by summing the column height to the altitude of the crater. However, for June 4, 5 and 6 the altitude of the

top of the volcanic plume has been limited to 11000m.a.s.l to avoid loss of volcanoc ashes throuht the top of the model, which

is located at 180 hPa, or equivalently 12000 m.a.s.l at the considered latitude.15

The refractive indices of the volcanic ashes from Derimian et al. (2012) have been used. However, as these authors provide

the refractive indices of volcanic ash only in the visible, the values at 200 and 300 nm have been taken as equal to the value

given at 440 nm.

The granulometry of the ashes are taken as 80% in a coarse mode, with a lognormal distribution centered at 30µm and 20%

in a finer mode with a lognormal distribution centered at 4µm, consistent with the results of Durant et al. (2009).20

The SO2 mass flux has been adapted from Theys et al. (2013) for the first 48 hours of the eruption. Since these authors do

not provide an estimation for the subsequent part of the eruption, we completed the time series for SO2 emission by assuming

a constant ratio between the mass flux of the ash, provided by Mastin et al. (2009), and the SO2 mass flux (see Tab. 7).

7.3 Anthropogenic and natural emissions

Anthropogenic and natural emissions have been modelled as described above. The anthropogenic emissions have been pro-25

duced from the HTAP dataset, while biogenic emissions have been produced from the MEGAN model. Mineral dust emissions

have not been included in this simulation, since the focus of this testbed study was in the circumpolar transport of ash emissions

from the Puyehue volcano.
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day H V̇ Ṁ M M63

04/06 10 794.9 1.99×1006 2.86×1010 1.14×1010

05/06 10 794.9 1.99×1006 1.72×1011 6.87×1010

06/06 10 794.9 1.99×1006 1.72×1011 6.87×1010

07/06 6.5 133.0 3.33×1005 2.87×1010 1.15×1010

08/06 7 180.9 4.52×1005 3.91×1010 1.56×1010

09/06 8.5 405.0 1.01×1006 8.75×1010 3.50×1010

10/06 8 314.9 7.87×1005 6.80×1010 2.72×1010

11/06 6.5 133.0 3.33×1005 2.87×1010 1.15×1010

12/06 7 180.9 4.52×1005 3.91×1010 1.56×1010

13/06 8 314.9 7.87×1005 6.80×1010 2.72×1010

14/06 7 240.9 6.02×1005 5.20×1010 2.08×1010

15/06 8 314.9 7.87×1005 6.80×1010 2.72×1010

16/06 7 180.9 4.52×1005 3.91×1010 1.56×1010

17/06 5.5 66.5 1.66×1005 1.44×1010 5.75×1009

18/06 5 44.8 1.12×1005 9.68×1009 3.87×1009

19/06 4 17.7 4.44×1004 3.83×1009 1.53×1009

20/06 4 17.7 4.44×1004 3.83×1009 1.53×1009

Table 6. H : column height (km) ; V̇ : volume flux (m3 s−1); Ṁ : Mass flux (kg s−1); M : emitted mass (kg); M63 : emitted mass for the

fraction with diameter < 63µm

7.4 Simulation outputs

7.4.1 Circumpolar transport

The simulation, covering from May 15 through June 30 can be divided into two successive phases : first, from May 14 to

June 4, the model undergoes a spinup period, with the concentrations of gaseous and particulate species building up due to the

emissions of sea-salt and anthropogenic contaminants (Fig. 8a). At the end of this spin-up period, significan AOD values, from5

0.05 to 0.20 appear over the southern ocean from 30 to 70◦S, mostly due to sea-salt emissions, consistent with the findings of

Jaeglé et al. (2011), and consistent with the satellite-based climatology of these authors, which represent a mean value about

0.15 in these areas. In the subsequent time steps, the volcanic ash plume from the Puyehue volcano becomes the dominant

feature of the AOD structure in the southern hemisphere. While it is difficult to compare the simulated values to measured

ones because of the large uncertainties on the mass flux and size distribution of the volcanic ashes, it is possible to compare10

the modelled trajectory of the ash plume with spaceborne observations. For this purpose, we will rely on the space images and

analyses provided by Klüser et al. (2013) and Global Volcanism Program (2013). Fig. 8b for June 6 at 12UTC (8AM local

time) can be compared to Figure 2 of Klüser et al. (2013) (lower left panel), which shows that at this time, about 36 hours
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day H Ṁ M

04/06 - 19-24UTC 10 250 5.21×107

05/06 - 00-08UTC 10 250 8.33×107

05/06 - 08-20UTC 10 110 5.50×107

05/06 - 20-24UTC 10 60 1.00×107

06/06 - 00-24UTC 10 60 6.00×107

07/06 - 00-24UTC 6.5 60 2.01×107

08/06 - 00-24UTC 7 60 2.74×107

09/06 - 00-24UTC 8.5 60 6.12×107

10/06 - 00-24UTC 8 60 4.76×107

11/06 - 00-24UTC 6.5 60 2.01×107

12/06 - 00-24UTC 7 60 2.74×107

13/06 - 00-24UTC 8 60 4.76×107

14/06 - 00-24UTC 7.5 60 2.74×107

15/06 - 00-24UTC 8 60 4.76×107

16/06 - 00-24UTC 7 60 2.74×107

17/06 - 00-24UTC 5.5 60 1.01×107

18/06 - 00-24UTC 5 60 6.77×106

19/06 - 00-24UTC 4 60 2.68×106

19/06 - 00-24UTC 4 60 2.68×106

Table 7. H : column height (km) ; Ṁ : Mass flux (ktd−1); M : emitted mass of SO2 (kg)

after the onset of the eruption, the initial direction of the volcanic plume is eastward, with a slight southward tilt, consistent

with the CHIMERE simulations. On June 8 (Fig. 8d), the simulated pattern for ash transport also fits very well the pattern

that is visible on Fig. 3 by these authors (upper left panel), with the initial portion of the ash plume travelling southward

over the southern Atlantic and reaching towards the southern Pacific ocean over cape Horn, a pattern that is observed in both

CHIMERE observations and the satellite observations. The older parts of the plume are located either off the Atlantic coasts of5

Argentina, covering a large part of southern Brazil in the model but not so in the infrared AOD data provided by Klüser et al.

(2013). Finally, the plume from the initial explosions are located at that time in the souther ocean, in-between the southern tip

of the African continent and the Antarctic. It can also be observed that while the ash plume is continuous in the CHIMERE

simulation, it is not so in the observations. This reflects the succession of explosive phases and quiet phases of the volcanic

eruption, while the flux imposed to the CHIMERE model is continuous, as discussed in Boichu et al. (2013), who also present10

a possible workaround for this problem by assimilation of satellite data.

Four days later, on June 12, the leading edge of the volcanic ash plume is located at about 135◦W and 55◦S above the

southern Pacific ocean, while other portions of the plume are located above New-Zealand, Tasmania, and areas of continental

Australia and South-Africa. Later on, on June 14, the leading edge of the ash plume reaches back to the southern coasts of
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Simulated AOD at 600 nm every 48 hours from June 4, 12UTC to June 14, 12UTC

Chile, as visible in both the simulation outputs (Fig. 8f) and the report of Global Volcanism Program (2013), indicating that

part of the plume was reaching South-America from the Pacific ocean at that time between 35 and 50◦S while other parts of the
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ash plume were located further to the South, close to the Antarctic peninsula, consistent with Fig. 8f. On June 14 and during

the following days, the plume from the initial explosion of June 4 and the following days is overpassing the Puyehue volcano

again, a fact that is correctly captured by the CHIMERE model.

7.4.2 Lidar observables

As described in Section 5.4, the main LIDAR observables are now provided as model outputs by the CHIMERE model. As an5

example of the results of this treatment for the case of the Puyehue eruption, the zenithal and nadir simulated backscattering

ratios are presented on Fig. 9. Even though a validation of these observables by confrontation to observations is not presented

here, the simulated patterns are physically reasonable, with backscattering rations reaching maximum values in the lowest part

of the aerosol plumes (for the zenithal backscattering ratio, Fig. 9a) and low values above due to absorption and scattering of

the beam by the lowest part of the plume. Of course, the contrary is observed for the simulated space-based nadir backscatter10

ratio (Fig. 9b)

8 Conclusions

CHIMERE-2016 is a model version which presents several major improvements compared to the earlier version described in

Menut et al. (2013a). The version presented here has the ability to include all types of emissions. Compared to the previous

model version, anthropogenic emissions can be generated anywhere in the world from the HTAP emission inventory, as well15

as mineral dust emissions, which were available only for North Africa and the Arabian peninsula in previous model versions.

With the same objective of permitting the use of the model in any part of the world and at any scale from urban to hemispheric

scale, an important limitation of the model has been removed by improving the internal treatment of the transport on the sphere,

allowing for domains up to the hemispheric scale, and possibly including a geographic pole. Much attention has also been paid

to the physical processes, including a major update in the representation of the physical processes affecting the aerosols, as20

well as the effect of the modelled aerosol on the photolytic reaction rates. Other efforts have been made to improve the user’s

experience with the model: this includes improvements in the parallelization of the model in order to reduce computation time,

as well as providing key observable variables such as the Aerosol optical depth and LIDAR backscatter coefficients, which

permits the user to compare the outputs of the model directly with the results of remote-sensing observations.

These improvements pave the way to many applications that were out of reach for the CHIMERE model up to now:25

CHIMERE 2016 has the necessary abilities to give new insights on questions such as the radiative impact of aerosols on

photochemistry, at all scales, from urban to hemispheric, including mineral dust emissions and deposition anywhere in the

world. The possibility to run hemispheric simulations also allows the use of this CTM for the study of transport of aerosol and

gaseous contamination plumes between the different continent within a hemisphere. It contributes to bridge the gap between

global chemistry-transport models such as LMDz-INCA, MOZART or Geos-CHEM and regional models: while CHIMERE30

has already been used successfully for the evaluation of the decadal trends in air quality over Europe (Colette et al., 2011), as

shown by the study Xing et al. (2015) with the hemispheric version of CMAQ, hemispheric versions of regional CTMs are
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(a)

(b)

Figure 9. (a) Zenithal backscattering ratio as simulated by CHIMERE at 1000 nm wavelength above the city of Buenos Aires ; and (b), same

as (a) but for the Nadir backscattering ratio

tools that can be used successfully to study long-term trends in regional air quality with added value from models simulated

in regional domains only because they can perform a consistent simulation over the entire hemisphere without relying on

boundary conditions provided by global CTMs relying on different assumptions and parameterizations.

Code availability

The present article refers to the CHIMERE-2016 release, which is freely available and provided under the GNU general public5

licence1. The source code along with the corresponding technical documentation can be obtained from the CHIMERE web site

at http://www.lmd.polytechnique.fr/chimere/.

1http://www.gnu.org/copyleft/gpl.html
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